Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 15: 175-198, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38484151

RESUMO

Our understanding of DNA G-quadruplexes (G4s) from in vitro studies has been complemented by genome-wide G4 landscapes from cultured cells. Conventionally, the formation of G4s is accepted to depend on G-repeats such that they form tetrads. However, genome-wide G4s characterized through high-throughput sequencing suggest that these structures form at a large number of regions with no such canonical G4-forming signatures. Many G4-binding proteins have been described with no evidence for any protein that binds to and stabilizes G4s. It remains unknown what fraction of G4s formed in human cells are protein-bound. The G4-chromatin immunoprecipitation (G4-ChIP) method hitherto employed to describe G4 landscapes preferentially reports G4s that get crosslinked to proteins in their proximity. Our current understanding of the G4 landscape is biased against representation of G4s which escape crosslinking as they are not stabilized by protein-binding and presumably transient. We report a protocol that captures G4s from the cells efficiently without any bias as well as eliminates the detection of G4s formed artifactually on crosslinked sheared chromatin post-fixation. We discover that G4s form sparingly at SINEs. An application of this method shows that depletion of a repeat-binding protein CGGBP1 enhances net G4 capture at CGGBP1-dependent CTCF-binding sites and regions of sharp interstrand G/C-skew transitions. Thus, we present an improved method for G4 landscape determination and by applying it we show that sequence property-specific constraints of the nuclear environment mitigate G4 formation.


Assuntos
Quadruplex G , Humanos , Cromatina , Genoma , Anticorpos , Ligação Proteica , Proteínas de Ligação a DNA/genética
2.
Biochemistry ; 63(5): 711-722, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38380587

RESUMO

The cytochrome P450 enzyme CYP121A1 endogenously catalyzes the formation of a carbon-carbon bond between the two phenol groups of dicyclotyrosine (cYY) in Mycobacterium tuberculosis (Mtb). One of 20 CYP enzymes in Mtb, CYP121A1 continues to garner significant interest as a potential drug target. The accompanying reports the use of 19F NMR spectroscopy, reconstituted activity assays, and molecular dynamics simulations to investigate the significance of hydrogen bonding interactions that were theorized to stabilize a static active site water network. The active site residue Asn-85, whose hydrogen bonds with the diketopiperazine ring of cYY contributes to a contiguous active site water network in the absence of cYY, was mutated to a serine (N85S) and to a glutamine (N85Q). These conservative changes in the hydrogen bond donor side chain result in inactivation of the enzyme. Moreover, the N85S mutation induces reverse type-I binding as measured by absorbance difference spectra. NMR spectra monitoring the ligand-adaptive FG-loop and the active site Trp-182 side chain confirm that disruption of the active site water network also significantly alters the structure of the active site. These data were consistent with dynamics simulations of N85S and N85Q that demonstrate that a compromised water network is responsible for remodeling of the active site B-helix and a repositioning of cYY toward the heme. These findings implicate a slowly exchanging water network as a critical factor in CYP121A1 function and a likely contributor to the unusual rigidity of the structure.


Assuntos
Mycobacterium tuberculosis , Domínio Catalítico , Asparagina , Água , Sistema Enzimático do Citocromo P-450/metabolismo , Carbono , Ligação de Hidrogênio
3.
Front Microbiol ; 14: 1206945, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928673

RESUMO

Saccharomyces cerevisiae Stm1 protein is a ribosomal association factor, which plays an important role in preserving ribosomes in a nutrition-deprived environment. It is also shown to take part in apoptosis-like cell death. Stm1 N-terminal region (Stm1_N1-113) is shown to recognize purine motif DNA triplex and G-quadruplex. Circular dichroism (CD) spectra of Stm1_N1-113 (enriched in positively-charged Lysine and Arginine; negatively-charged Aspartate; polar-uncharged Threonine, Asparagine, Proline and Serine; hydrophobic Alanine, Valine, and Glycine) collected after 0 and 24 h indicate that the protein assumes beta-sheet conformation at the higher concentrations in contrast to intrinsically disordered conformation seen for its monomeric form found in the crystal structure. Thioflavin-T kinetics experiments indicate that the lag phase is influenced by the salt concentration. Atomic force microscopy (AFM) images collected for a variety of Stm1_N1-113 concentrations (in the range of 1-400 µM) in the presence of 150 mM NaCl at 0, 24, and 48 h indicate a threshold concentration requirement to observe the time-dependent amyloid formation. This is prominent seen at the physiological salt concentration of 150 mM NaCl with the fibrillation observed for 400 µM concentration at 48 h, whereas oligomerization or proto-fibrillation is seen for the other concentrations. Such concentration-dependent fibrillation of Stm1_N1-113 explains that amyloid fibrils formed during the overexpression of Stm1_N1-113 may act as a molecular device to trigger apoptosis-like cell death.

4.
ACS Chem Neurosci ; 14(19): 3646-3654, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37698929

RESUMO

The cationic organo ruthenium(II) salts ([Ru(p-cymene)(ipit)(Cl)](Cl) (RuS), 1-isopropyl-3-(pyridin-2-yl)-imidazol-2-thione (ipit) and [Ru(p-cymene)(ipis)(Cl)](Cl) (RuSe), 1-isopropyl-3-(pyridin-2-yl)-imidazol-2-selenone (ipis)) are isolated, and their binding efficacy with d(CGG)15 quadruplex is investigated. Circular dichroism (CD) wavelength scan titration experiments of RuS and RuSe compounds with the intermolecular parallel quadruplex formed by d(CGG)15 (associated with neurodegenerative/neuromuscular/neuronal intranuclear inclusion disorders like FXTAS, OPMD, OPDM types 1-4, and OPML as well as FXPOI) and with the control d(CGG)15·d(CCG)15 duplex indicate their specificity toward the former. Electrophoretic mobility shift titration experiments also confirm the binding of the ligands with d(CGG)15. CD thermal denaturation experiments indicate that both RuS and RuSe destabilize the quadruplex, specifically at 10 mM concentration of the ligands. This is further confirmed by 1D 1H NMR experiments. Such a destabilizing effect of these ligands on the d(CGG)15 quadruplex indicates that RuS and RuSe chalcogen complexes can act as a template for the design of novel molecules for the diagnostics and/or therapeutics of CGG repeat expansion-associated diseases.


Assuntos
Doenças Neuromusculares , Sais , Humanos , DNA , Cimenos
5.
Front Microbiol ; 14: 1191542, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37415807

RESUMO

Acinetobacter baumannii is an emerging opportunistic pathogen. It exhibits multi-, extreme-, and pan-drug resistance against several classes of antibiotics. Capsular polysaccharide (CPS or K-antigen) is one of the major virulence factors which aids A. baumannii in evading the host immune system. K-antigens of A. baumannii exploit the Wzx/Wzy-dependent pathway that involves 13 different proteins for its assembly and transport onto the outer membrane. A total of 64 (out of 237 K-locus(KL) types) known K-antigen sugar repeating structures are discussed here and are classified into seven groups based on their initial sugars, QuiNAc4NAc, GalNAc, GlcNAc, Gal, QuiNAc/FucNAc, FucNAc, and GlcNAc along with Leg5Ac7Ac/Leg5Ac7R. Thus, the corresponding seven initializing glycosyltransferases (ItrA1, ItrA2, ItrA3, ItrA4, ItrB1, ItrB3, and ItrA3 along with ItrB2) exhibit serotype specificity. The modeled 3D-structural repository of the 64 K-antigens can be accessed at https://project.iith.ac.in/ABSD/k_antigen.html. The topology of K-antigens further reveals the presence of 2-6 and 0-4 sugar monomers in the main and side chains, respectively. The presence of negatively (predominant) or neutrally charged K-antigens is observed in A. baumannii. Such diversity in the K-antigen sugar composition provides the K-typing specificity (viz., 18-69% in terms of reliability) for Wza, Wzb, Wzc, Wzx, and Wzy proteins involved in the Wzx/Wzy-dependent pathway. Interestingly, the degree of uniqueness of these proteins among different K-types is estimated to be 76.79%, considering the 237 reference sequences. This article summarizes the A. baumannii K-antigen structural diversity and creation of a K-antigen digital repository and provides a systematic analysis of the K-antigen assembly and transportation marker proteins.

6.
J Mol Biol ; 435(14): 168046, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37356912

RESUMO

Over 2500 Salmonella species (alternatively, serovars) encompassing different combinations of O-, H1- and H2-antigens are present in nature and cause millions of deaths worldwide every year. Since conventional serotyping is time-consuming, a user-friendly Salmonellaspecies serotyping (SSP) web tool (https://project.iith.ac.in/SSP/) is developed here to predict the serotypes using Salmonella protein(s) or whole proteome sequences. Prior to SSP implementation, a detailed analysis of protein sequences involved in O-antigen biosynthesis and H-antigen formation is carried out to assess their serotype specificity. Intriguingly, the results indicate that the initializing transferases WbaP, WecA and GNE can efficiently distinguish the O-antigens, which have Gal, GlcNAc and GalNAc as initial sugars respectively. Rigorous analysis shows that Wzx and Wzy are sufficient to distinguish the O-types. Exceptionally, some situations warrant additional proteins. Thus, 150 additional transferases, RfbE for O2, O9 and O9,46 types, Orf17.4 for O3,10 and O1,3,19 types, WecB, WbbE and WbbF for O54 and, Wzm and Wzt for O67 are utilized in serotyping. An in-depth analysis of 302 reference datasets representing 56 H1- and 20 H2-types leads to the identification and utilization of 61 unique sequence patterns of FliC and FljB in H-typing. A test dataset of 2136 whole proteome sequences covering 740 Salmonella serovars, including 13 new species are successfully predicted with 99.72% accuracy. Prior to this, all the O-, H1- and H2-antigens are predicted accurately when tested independently. Indeed, SSP also identifies wrongly annotated Salmonella species; hence, it can easily identify new species that emerge with any combination of O-, H1- and H2-antigens. Thus, SSP can act as a valuable tool in the surveillance of Salmonella species.


Assuntos
Antígenos O , Proteoma , Salmonella , Sorotipagem , Sequência de Aminoácidos , Antígenos O/biossíntese , Antígenos O/genética , Salmonella/genética , Salmonella/imunologia , Sorotipagem/métodos , Simulação por Computador
7.
J Proteome Res ; 22(6): 1984-1996, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37036263

RESUMO

SARS-CoV-2 has significantly mutated its genome during the past 3 years, leading to the periodic emergence of several variants. Some of the variants possess enhanced fitness advantage, transmissibility, and pathogenicity and can also reduce vaccine efficacy. Thus, it is important to track the viral evolution to prevent and protect the mankind from SARS-CoV-2 infection. To this end, an interactive web-GUI platform, namely, CoVe-tracker (SARS-CoV-2 evolution tracker), is developed to track its pan proteome evolutionary dynamics (https://project.iith.ac.in/cove-tracker/). CoVe-tracker provides an opportunity for the user to fetch the country-wise and protein-wise amino acid mutations (currently, 44139) of SARS-CoV-2 and their month-wise distribution. It also provides position-wise evolution observed in the SARS-CoV-2 proteome. Importantly, CoVe-tracker provides month- and country-wise distributions of 2065 phylogenetic assignment of named global outbreak (PANGO) lineages and their 177564 variants. It further provides periodic updates on SARS-CoV-2 variant(s) evolution. CoVe-tracker provides the results in a user-friendly interactive fashion by projecting the results onto the world map (for country-wise distribution) and protein 3D structure (for protein-wise mutation). The application of CoVe-tracker in tracking the closest cousin(s) of a variant is demonstrated by considering BA.4 and BA.5 PANGO lineages as test cases. Thus, CoVe-tracker would be useful in the quick surveillance of newly emerging mutations/variants/lineages to facilitate the understanding of viral evolution, transmission, and disease epidemiology.


Assuntos
COVID-19 , Proteoma , Humanos , Proteoma/genética , SARS-CoV-2/genética , COVID-19/epidemiologia , Filogenia , Mutação
8.
ACS Infect Dis ; 9(4): 827-839, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-36976833

RESUMO

The essential enzyme CYP121A1 of Mycobacterium tuberculosis forms a functional dimer, which when disrupted results in a decrease of activity and substrate specificity. The crystal structure of CYP121A1 in complex with its substrate di-cyclotyrosine (cYY) indicates that the aromatic side chains of Phe-168 and Trp-182 form stabilizing π-π interactions with a tyrosyl ring of cYY. In the enclosed study, we utilize targeted 19F labeling of aromatic residues to label CYP121A1 for detection by nuclear magnetic resonance (NMR) spectroscopy. 19F-NMR spectra and functional characterization of mutations to Phe-168 and Trp-182 are combined with all-atom molecular dynamics simulations of substrate-bound and substrate-free CYP121A1. This study shows that these aromatic residues interact with cYY predominantly through π-π stacking. In addition to playing an essential role in substrate binding, these active site residues also stabilize the tertiary and quaternary structures of CYP121A1. An additional unexpected finding was the presence of cYY-induced long-range allostery that affects residues located near the homodimer interface. Taken together, this study highlights a structural relationship between the active site environment of this essential enzyme with its global structure that was previously unknown.


Assuntos
Mycobacterium tuberculosis , Domínio Catalítico , Proteínas , Simulação de Dinâmica Molecular , Espectroscopia de Ressonância Magnética
9.
Int J Biol Macromol ; 216: 698-709, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35809677

RESUMO

The transition from right-handed to left-handed DNA is not only acts as the controlling factor for switching gene expression but also has equal importance in designing nanomechanical devices. The (CG)n and (GC)n repeat sequences are well known model molecules to study B-Z transition in the presence of higher concentration of monovalent cations. In this communication, we report a cyclic transition in (CG)6 DNA using millimolar concentration of trivalent lanthanide salt LaCl3. The controlled and reversible transition was seen in (CG)12, and (GC)12 DNA employing CD spectroscopy. While LaCl3 failed to induce B-Z transition in shorter oligonucleotides such as (CG)3 and (GC)3, a smooth B-Z transition was recorded for (CG)6, (CG)12 and (GC)12 sequences. Interestingly, the phenomenon was reversible (Z-B transition) with addition of EDTA. Particularly, two rounds of cyclic transition (B-Z-B-Z-B) have been noticed in (CG)6 DNA in presence of LaCl3 and EDTA which strongly suggest that B-Z transition is reversible in short repeat sequences. Thermal melting and annealing behaviour of B-DNA are reversible while the thermal melting of LaCl3-induced Z-DNA is irreversible which suggest a stronger binding of LaCl3 to the phosphate backbone of Z-DNA. This was further supported by isothermal titration calorimetric study. Molecular dynamics (MD) simulation indicates that the mode of binding of La3+ (of LaCl3) with d(CG)8.d(CG)8 is through the minor groove, wherein, 3 out of 11 La3+ bridge the anionic oxygens of the complementary strands. Such a tight coordination of La3+ with the anionic oxygens at the minor groove surface may be the reason for the experimentally observed irreversibility of LaCl3-induced Z-DNA seen in longer DNA fragments. Thus, these results indicate LaCl3 can easily be adopted as an inducer of left-handed DNA in other short oligonucleotides sequences to facilitate the understanding of the molecular mechanism of B-Z transition.


Assuntos
DNA Forma Z , DNA/química , Ácido Edético , Lantânio , Conformação de Ácido Nucleico , Oligonucleotídeos
10.
Environ Microbiol Rep ; 14(6): 850-855, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35718540

RESUMO

Several investigations have been carried out to detect SARS-CoV-2 samples from the environment such as sewage waters and surface swabs. Whole-proteome sequence analysis of 847 SARS-CoV-2 genome sequences collected from the environment in Austria during 2021 and deposited in GISAID indicates that alpha and delta are two dominant variants, coinciding with the human clinical samples with a Pearson correlation coefficient in the range of 0.58 (alpha variant) to 0.82 (delta variant). Both environmental and human samples show that Austrian SARS-CoV-2 alpha variant is found to possess N protein R203K and G204R/P mutations, whereas they are absent in the delta variant. SARS-CoV-2 delta variant is continuously seen in both the environmental and human clinical samples from the month of September 2021 and it spiked in November 2021, which is directly reflected in the increase of the number of SARS-CoV-2 infections and deaths in Austria during November 2021. Thus, the results presented here indicate that the environmental SARS-CoV-2 whole-genome sequences collected from Austria reflect the community viral distribution, evolution and the concomitant epidemiological dynamics. Since SARS-CoV-2 keeps evolving, the results presented here further suggest the need to monitor the environment for the early detection of SARS-CoV-2 variants to take appropriate precautionary measures.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Proteoma , Áustria/epidemiologia , COVID-19/epidemiologia , Genoma Viral/genética
11.
Comput Biol Chem ; 98: 107686, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35512549

RESUMO

Biomolecular structural knowledge is important to understand the biological processes and the mechanisms underlying human diseases. In silico modeling plays a vital role in de novo design and docking of biomacromolecules as well as in exploring their conformational dynamics. Additionally, it has a major role in acquiring the structural insights using the parameters derived from experimental techniques such as cryo-electron microscopy. Steric hindrance is one of the important measures to validate the accuracy of the modeled biomolecular structures. A web user interface (WUI), namely, STRIDER (steric hindrance and metal coordination identifier) (www.iith.ac.in/strider/) estimates and reports pairwise inter- and intra- molecular steric hindrances using the van der Waals radius of 117 elements. STRIDER identifies and reports the coordination pattern of 64 metals in an interactive mode. It can provide conformer wise interaction pattern(s) of an ensemble of conformers which is needed in circumventing sampling issue in flexible docking, protein folding and structure based virtual screening. Further, it generates a pymol session file which highlights the aforementioned interaction for an offline analysis. Since STRIDER simply requires the Cartesian coordinates of a molecule in PDB format, any chemical structure can be given as an input. Functionality of STRIDER is illustrated here by considering several examples.


Assuntos
Metais , Microscopia Crioeletrônica , Humanos , Conformação Molecular
12.
Zoonoses Public Health ; 69(7): 816-825, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35614572

RESUMO

Since its first emergence in December 2019, the world has witnessed the eruption of mutations in the SARS-CoV-2 genome that have led to increased viral transmissibility and pathogenicity due to sustained local viral transmission. Zooanthroponotic and zoonotic transmissions have further raised concerns as they could result in the emergence of viral variants with a novel antigenicity and transmissibility that could jeopardize the vaccine efficacy. To understand the viral evolution during such transmissions, 1016 whole-genome sequences (deposited in GISAID as of March 7, 2022) (from 18 countries) corresponding to mink, cat, deer, dog, hyena, tiger, lion, gorilla, Syrian hamster, leopard cat, fishing cat, bear cat, coati, ferret, snow leopard and green monkey have been analysed here. Intriguingly, phyloproteome analysis indicate that Nsp2:R218C, Nsp2:D268-(deletion), Spike:D614G, Nsp12:P323L, Nsp2:A192V, ORF3a protein:Q57H, N protein:R203K and N protein:G204R/L, Spike:A222V, ORF10 protein:V30L and N protein:A220V are moderate or high recurring and clade decisive mutations, leading to 6 primary clades during the early stage of pandemic. Most interestingly, the human evolved delta variant having a combination of 26 (clade decisive) mutations defines the seventh clade and transmits to non-human hosts across the globe without exhibiting any country-specific mutation(s). Nonetheless, Spike:D614G and Nsp12:P323L together with (i)N protein:R203K,N protein:G204R/L,Spike:V70-, Spike:H69-, Nsp12:T739I, and Nsp1:M85-, (ii)Nsp2:A192V, Nsp3:D178Y, (iii)Nsp2:T85I, N protein:P67S and ORF3a protein:Q57H and (iv)Spike:A222V, ORF10 protein:V30L, N protein:A220V and Spike:F486I are specific to Denmark, Netherlands, USA and Latvia respectively and, (v)Nsp2:D268- and Nsp13:R292C that are devoid of Spike:D614G and Nsp12:P323L is specific to Netherlands. SARS-CoV-2 variants consisting of these mutations are also seen in the human SARS-CoV-2 sequences from the same country. Independent country-specific SARS-CoV-2 variant evolution further indicates distinct epidemiological dynamics during zooanthroponotic and zoonotic transmissions. Thus, the results presented here indicate the need for the surveillance of viral evolution in non-human hosts also during the future pandemic.


Assuntos
COVID-19 , Cervos , Doenças do Cão , Aminoácidos/genética , Animais , COVID-19/veterinária , Chlorocebus aethiops , Cães , Furões , Humanos , Mutação , SARS-CoV-2/genética
13.
Comput Struct Biotechnol J ; 19: 4447-4455, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34471491

RESUMO

CAG repeat instability causes a number of neurodegenerative disorders. The unusual hairpin stem structure formed by the CAG repeats in DNA traps the human mismatch repair MSH2.MSH3 (Mutsß) complex. To understand the mechanism behind the abnormal binding of Mutsß with the imperfect hairpin stem structure formed by CAG repeats, molecular dynamics simulations have been carried out for Mutsß-d(CAG)2(CAG)(CAG)2.d(CTG)2(CAG)(CTG)2 (1 A…A mismatch) and Mutsß-d(CAG)5.d(CAG)5 (5 mismatches, wherein, A…A occurs periodically) complexes. The interaction of MSH3 residue Tyr245 at the minor groove side of A…A, an essential interaction responsible for the recognition by Mutsß, are retained in both the cases. Nevertheless, the periodic unwinding caused by the nonisostericity of A…A with the flanking canonical base pairs in d(CAG)5.d(CAG)5 distorts the regular B-form geometry. Such an unwinding exposes one of the A…A mismatches (that interacts with Tyr245) at the major groove side and also facilitates the on and off hydrogen bonding interaction with Lys546 sidechain (MSH2-domain-IV). In contrast, kinking of the DNA towards the major groove in Mutsß-d(CAG)2(CAG)(CAG)2.d(CTG)2(CAG)(CTG)2 doesn't facilitate such an exposure of the bases at the major groove. Further, the unwinding of the helix in d(CAG)5.d(CAG)5 enhances the tighter binding between MSH2-domain-I and d(CAG)5.d(CAG)5 at the major groove side as well as between MSH3-domain-I and MSH3-domain-IV. Markedly, such enhanced interactions are absent in Mutsß-d(CAG)2(CAG)(CAG)2.d(CTG)2(CAG)(CTG)2 that has a single A…A mismatch. Thus, the above-mentioned enhancement in intra- and inter- molecular interactions in Mutsß-d(CAG)5.d(CAG)5 provide the stereochemical rationale for the trapping of Mutsß in CAG repeat expansion disorders.

14.
Front Immunol ; 12: 692937, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497604

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) kills thousands of people worldwide every day, thus necessitating rapid development of countermeasures. Immunoinformatics analyses carried out here in search of immunodominant regions in recently identified SARS-CoV-2 unannotated open reading frames (uORFs) have identified eight linear B-cell, one conformational B-cell, 10 CD4+ T-cell, and 12 CD8+ T-cell promising epitopes. Among them, ORF9b B-cell and T-cell epitopes are the most promising followed by M.ext and ORF3c epitopes. ORF9b40-48 (CD8+ T-cell epitope) is found to be highly immunogenic and antigenic with the highest allele coverage. Furthermore, it has overlap with four potent CD4+ T-cell epitopes. Structure-based B-cell epitope prediction has identified ORF9b61-68 to be immunodominant, which partially overlaps with one of the linear B-cell epitopes (ORF9b65-69). ORF3c CD4+ T-cell epitopes (ORF3c2-16, ORF3c3-17, and ORF3c4-18) and linear B-cell epitope (ORF3c14-22) have also been identified as the candidate epitopes. Similarly, M.ext and 7a.iORF1 (overlap with M and ORF7a) proteins have promising immunogenic regions. By considering the level of antigen expression, four ORF9b and five M.ext epitopes are finally shortlisted as potent epitopes. Mutation analysis has further revealed that the shortlisted potent uORF epitopes are resistant to recurrent mutations. Additionally, four N-protein (expressed by canonical ORF) epitopes are found to be potent. Thus, SARS-CoV-2 uORF B-cell and T-cell epitopes identified here along with canonical ORF epitopes may aid in the design of a promising epitope-based polyvalent vaccine (when connected through appropriate linkers) against SARS-CoV-2. Such a vaccine can act as a bulwark against SARS-CoV-2, especially in the scenario of emergence of variants with recurring mutations in the spike protein.


Assuntos
Antígenos Virais/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , SARS-CoV-2/imunologia , Sequência de Aminoácidos/genética , Antígenos Virais/genética , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/uso terapêutico , Biologia Computacional , Proteínas do Nucleocapsídeo de Coronavírus/genética , Desenho de Fármacos , Mapeamento de Epitopos , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Humanos , Fases de Leitura Aberta/genética , Fases de Leitura Aberta/imunologia , SARS-CoV-2/genética , Análise de Sequência de Proteína , Vacinas Combinadas/genética , Vacinas Combinadas/imunologia
15.
Infect Genet Evol ; 93: 104973, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34147651

RESUMO

SARS-CoV-2 is currently causing major havoc worldwide with its efficient transmission and propagation. To track the emergence as well as the persistence of mutations during the early stage of the pandemic, a comparative analysis of SARS-CoV-2 whole proteome sequences has been performed by considering manually curated 31,389 whole genome sequences from 84 countries. Among the 7 highly recurring (percentage frequency≥10%) mutations (Nsp2:T85I, Nsp6:L37F, Nsp12:P323L, Spike:D614G, ORF3a:Q57H, N protein:R203K and N protein:G204R), N protein:R203K and N protein: G204R are co-occurring (dependent) mutations. Nsp12:P323L and Spike:D614G often appear simultaneously. The highly recurring Spike:D614G, Nsp12:P323L and Nsp6:L37F as well as moderately recurring (percentage frequency between ≥1 and <10%) ORF3a:G251V and ORF8:L84S mutations have led to4 major clades in addition to a clade that lacks high recurring mutations. Further, the occurrence of ORF3a:Q57H&Nsp2:T85I, ORF3a:Q57H and N protein:R203K&G204R along with Nsp12:P323L&Spike:D614G has led to 3 additional sub-clades. Similarly, occurrence of Nsp6:L37F and ORF3a:G251V together has led to the emergence of a sub-clade. Nonetheless, ORF8:L84S does not occur along with ORF3a:G251V or Nsp6:L37F. Intriguingly, ORF3a:G251V and ORF8:L84S are found to occur independent of Nsp12:P323L and Spike:D614G mutations. These clades have evolved during the early stage of the pandemic and have disseminated across several countries. Further, Nsp10 is found to be highly resistant to mutations, thus, it can be exploited for drug/vaccine development and the corresponding gene sequence can be used for the diagnosis. Concisely, the study reports the SARS-CoV-2 antigens diversity across the globe during the early stage of the pandemic and facilitates the understanding of viral evolution.


Assuntos
COVID-19/virologia , Mutação , SARS-CoV-2/fisiologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Evolução Biológica , COVID-19/epidemiologia , Hospitalização , Humanos , Proteoma/genética , Proteoma/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética , Replicação Viral/genética , Sequenciamento Completo do Genoma
16.
Comput Struct Biotechnol J ; 19: 3864-3875, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34109017

RESUMO

The knowledge about SARS-CoV-2 proteome variations is important to understand its evolutionary tactics and in drug/vaccine design. An extensive analysis of 125,747 whole proteome reveals 7915 recurring mutations (involving 5146 positions) during December2019-November 2020. Among these, 10 and 51 are highly and moderately recurring mutations respectively. Ever since the pandemic outbreak, ∼50% new proteome variants evolve every month, resulting in 5 major clades. Intriguingly, ∼70% of the variants reported in January 2020 are due to the emergence of new mutations, which sharply declines to ∼ 40% in April 2020 and thenceforth, declines steadily till November 2020(∼10%). An exactly opposite trend is seen for variants evolved with cocktail of existing mutations: the lowest in January 2020(∼20%) and the highest in November 2020(80%). This leads to a steady increase in the average number of mutations per sequence. This indicates that the virus has reached the slow pace to accept new mutations. Instead, it uses a mutation combination strategy for survival.

17.
Sci Rep ; 11(1): 8163, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33854084

RESUMO

CGG tandem repeat expansion in the 5'-untranslated region of the fragile X mental retardation-1 (FMR1) gene leads to unusual nucleic acid conformations, hence causing genetic instabilities. We show that the number of G…G (in CGG repeat) or C…C (in CCG repeat) mismatches (other than A…T, T…A, C…G and G…C canonical base pairs) dictates the secondary structural choice of the sense and antisense strands of the FMR1 gene and their corresponding transcripts in fragile X-associated tremor/ataxia syndrome (FXTAS). The circular dichroism (CD) spectra and electrophoretic mobility shift assay (EMSA) reveal that CGG DNA (sense strand of the FMR1 gene) and its transcript favor a quadruplex structure. CD, EMSA and molecular dynamics (MD) simulations also show that more than four C…C mismatches cannot be accommodated in the RNA duplex consisting of the CCG repeat (antisense transcript); instead, it favors an i-motif conformational intermediate. Such a preference for unusual secondary structures provides a convincing justification for the RNA foci formation due to the sequestration of RNA-binding proteins to the bidirectional transcripts and the repeat-associated non-AUG translation that are observed in FXTAS. The results presented here also suggest that small molecule modulators that can destabilize FMR1 CGG DNA and RNA quadruplex structures could be promising candidates for treating FXTAS.


Assuntos
Ataxia/genética , Proteína do X Frágil de Retardo Mental/química , Proteína do X Frágil de Retardo Mental/genética , Síndrome do Cromossomo X Frágil/genética , RNA Mensageiro/química , Tremor/genética , Regiões 5' não Traduzidas , Dicroísmo Circular , Ensaio de Desvio de Mobilidade Eletroforética , Regulação da Expressão Gênica , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Expansão das Repetições de Trinucleotídeos
18.
Sci Rep ; 11(1): 3689, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574412

RESUMO

Base pair mismatches in DNA can erroneously be incorporated during replication, recombination, etc. Here, the influence of A…A mismatch in the context of 5'CAA·5'TAG sequence is explored using molecular dynamics (MD) simulation, umbrella sampling MD, circular dichroism (CD), microscale thermophoresis (MST) and NMR techniques. MD simulations reveal that the A…A mismatch experiences several transient events such as base flipping, base extrusion, etc. facilitating B-Z junction formation. A…A mismatch may assume such conformational transitions to circumvent the effect of nonisostericity with the flanking canonical base pairs so as to get accommodated in the DNA. CD and 1D proton NMR experiments further reveal that the extent of B-Z junction increases when the number of A…A mismatch in d(CAA)·d(T(A/T)G) increases (1-5). CD titration studies of d(CAA)·d(TAG)n=5 with the hZαADAR1 show the passive binding between the two, wherein, the binding of protein commences with B-Z junction recognition. Umbrella sampling simulation indicates that the mismatch samples anti…+ syn/+ syn…anti, anti…anti & + syn…+ syn glycosyl conformations. The concomitant spontaneous transitions are: a variety of hydrogen bonding patterns, stacking and minor or major groove extrahelical movements (with and without the engagement of hydrogen bonds) involving the mismatch adenines. These transitions frequently happen in anti…anti conformational region compared with the other three regions as revealed from the lifetime of these states. Further, 2D-NOESY experiments indicate that the number of cross-peaks diminishes with the increasing number of A…A mismatches implicating its dynamic nature. The spontaneous extrahelical movement seen in A…A mismatch may be a key pre-trapping event in the mismatch repair due to the accessibility of the base(s) to the sophisticated mismatch repair machinery.


Assuntos
Pareamento Incorreto de Bases/genética , DNA/química , Conformação de Ácido Nucleico , Termodinâmica , Pareamento de Bases/genética , Dicroísmo Circular , DNA/genética , Humanos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/genética
19.
J Mol Biol ; 433(11): 166629, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32841657

RESUMO

Nucleic acids exhibit a repertoire of conformational preference depending on the sequence and environment. Circular dichroism (CD) is an essential and valuable tool for monitoring such secondary structural conformations of nucleic acids. Nonetheless, the CD spectral diversity associated with these structures poses a challenge in obtaining the quantitative information about the secondary structural content of a given CD spectrum. To this end, the competence of the extreme gradient boosting decision-tree (XGBoost), Kohonen and neural network (nnet) algorithms have been exploited here to predict the diverse secondary structures of nucleic acids. A curated library of 450 CD spectra corresponding to 16 different secondary structures of nucleic acids has been created and used as a training dataset. The hyper-parameters corresponding to the aforementioned algorithms have been optimized using holdout and k-fold (here, k = 5) cross-validation methods. For a test dataset of 150 CD spectra, both the nnet and XGBoost algorithms have exhibited nearly similar prediction accuracy in the range of 85% and 87% (the latter exhibited a slightly higher prediction accuracy). Thus, the nnet and XGBoost algorithms tested here can be employed for predicting the hybrid nucleic acid topologies in future. For the sake of accessibility, the entire process has been automated and implemented as a webserver, called CD-NuSS (CD to nucleic acids secondary structure) and is freely accessible at https://project.iith.ac.in/cdnuss/.


Assuntos
Algoritmos , Dicroísmo Circular , Árvores de Decisões , Internet , Redes Neurais de Computação , Conformação de Ácido Nucleico , Ácidos Nucleicos/química , Software , Automação , Interface Usuário-Computador
20.
J Struct Biol ; 213(1): 107678, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33307177

RESUMO

Base pair mismatches can erroneously be incorporated in the DNA. An adenine pairing with another adenine is one of the eight possible mismatches. The atomistic insights about the structure and dynamics of an A…A mismatch in a DNA (unbound form) is not yet accessible to any experimental technique. Earlier molecular dynamics (MD) simulations have shown that A…A mismatch in the midst of 5'CAG/3'GAC, 5'GAC/3'CAG and 5'CAA/3'GAT (underline represents the mismatch) are highly dynamic in nature. By employing MD simulation, the influence of an A…A mismatch in the midst of 5'GAA/3'CAT, 5'GAG/3'CAC, 5'AAC/3'TAG, 5'AAG/3'TAC, 5'TAA/3'AAT, 5'TAT/3'AAA and 5'AAT/3'TAA sequences have been investigated here. The results indicate that irrespective of the flanking sequences, the mismatch samples a variety of transient conformations, including a B-Z junction. Further, circular dichroism studies have been carried out to explore the ability of these sequences to bind with hZαADAR1 which specifically recognizes B-Z junction/Z-DNA. The results indicate that hZαADAR1 could not lead to a complete B to Z transition in the above sequences. Notably, a complete transition to Z-form has been reported earlier for 5'GAC/3'CAG upon titrating with hZαADAR1. Intriguingly, 5'AAC/3'TAG, 5'AAG/3'TAC and 5'GAA/3'CAT exhibit a B-Z junction formation rather than a complete transition to Z-form, similar to the situation of 5'CAA/3'GAT. These indicate that although A…A mismatch could induce a local B-Z junction transiently, hZαADAR1 requires the presence of a G…C/C…G base pair adjacent to the A…A mismatch for the binding. Additionally, the extent of B-Z junction has enhanced upon binding with hZαADAR1 in the presence of the A…A mismatch (specifically when CG, CA, AC, GA and AG steps occur), but not in the presence of the canonical base pairs. These confirm the inclination of A…A mismatch towards the B-Z junction.


Assuntos
DNA Forma Z/metabolismo , DNA/metabolismo , Proteínas/metabolismo , Sítios de Ligação/fisiologia , Dicroísmo Circular/métodos , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...